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We establish a general semiquantitative phase-space picture of the classical nonlinear response in a strongly
chaotic system. As opposed to the case of stable dynamics, the response functions decay exponentially at long
times. Damped oscillations in response functions are attributed to collective resonances which do not corre-
spond to any periodic classical motions. We calculate analytically the second-order response in a simple
chaotic system and demonstrate the relevance of the concept for the interpretation of spectroscopic data.
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Time-domain femtosecond spectroscopy constitutes a
powerful tool that probes the electronic and vibrational co-
herent dynamics of complex molecular systems in the con-
densed phase �1–4�. Spectroscopic signals are directly re-
lated to optical response functions that carry detailed
information on the underlying dynamical phenomena. At
room temperatures the complexity often originates from slow
strongly anharmonic vibrational modes that can be treated
within the framework of classical mechanics.

A number of recent studies have been devoted to the non-
linear response in stable �integrable� dynamical systems
�5–7�. The classical response functions have been shown to
diverge algebraically, while the divergence can be eliminated
by invoking a fully quantum description �6,7�. However, at
larger energies, away from equilibrium, a generic dynamical
behavior can include chaotic features �8�. Moreover, unstable
dynamics should be more common due to the stability of
chaos with respect to perturbations. It has been argued �9�
based on the results of numerical analysis that in chaotic
systems classical response functions are converging. In spite
of its apparent importance, to the best of our knowledge, the
problem of the nonlinear response in strongly chaotic sys-
tems has never been addressed by analytical methods. Note
that for nonintegrable systems such approaches are rarely
feasible, while numerical simulations are complicated by the
exponential divergence of stability matrices �9�.

In this paper we show that �i� the classical response of a
chaotic system exhibits decay and oscillations as a function
of the times between the driving pulses and �ii� the Fourier
transform of the two-dimensional �2D� second-order re-
sponse function reveals broad asymmetric peaks as signa-
tures of chaos.

The paper is organized as follows. We first establish a
general Liouville-space �i.e., probability distribution space�
picture of the nonlinear response in a strongly chaotic system
and demonstrate the exponential decay of response functions
at long times. Motivated by Sinai’s idea originally applied to
a billiard �10�, we further argue that classical dynamics on an
energy shell with g forbidden regions can be qualitatively
represented by free motion on a curved Riemann surface of
genus g. To illustrate the general picture, we analytically
calculate the second-order response for motion on a surface

of constant negative curvature. Finally, we demonstrate that
2D spectroscopic data on strongly chaotic systems can be
interpreted in terms of collective Ruelle-Pollicott �RP� reso-
nances that characterize the spectrum of the coarse-grained
Liouville operator �11,12�.

A system driven by a time-dependent external field E�t� is
described by the Hamiltonian HT=H− fE�t� with the phase-
space function f���, which represents the dipole �see, e.g.,
Ref. �9��. The response functions S�n� that depend on n time
intervals describe the expansion of the measured signal
�f(��t�)�=�d��f in a functional series in E. The second-
order response function reads

S�2��t1,t2� = �t1� d�fe−L̂t2	f ,e−L̂t1f�E�0
 , �1�

where �0 and L̂= 	H , · 
 are the equilibrium distribution and
the unperturbed Liouville operator, respectively. The braces
denote the Poisson bracket.

We propose the following schematic picture for the
classical response in the Liouville space of a strongly
chaotic system �see Fig. 1�. We interpret the second-order
response in Eq. �1� as a convolution of the distributions
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FIG. 1. �Color online� Schematic cross section of the phase
space along the surface given by the stable and unstable directions.
The initial distribution of f is presented by two regions where its
values have opposite signs �red or dark gray and green or light
gray�. As time elapses the distribution elongates along the unstable
direction and contracts along the stable one.
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f−���=exp�L̂t2�f �propagated backward� and � j� j f+���,
where f+=exp�−L̂t1�f�E�0 and � j� j = 	f , · 
. Since �dxf =0, we
can assume for simplicity that f is nonzero in two separate
phase-space regions, where it adopts positive and negative
values of similar magnitudes. Strongly chaotic dynamics dur-
ing long time makes the shapes of the regions similar to
ribbonlike fettuccine: elongated along the unstable direction
by a factor �e�t, narrowed along the stable one �e−�t �� is
the Lyapunov exponent�, and unchanged along the flow �13�.
The fettuccine of f+ and f− are aligned along the unstable and
stable directions of the forward dynamics, respectively.
Therefore, their overlap is represented by a large set of
N�e��t1+t2� small disconnected regions, each of volume
v�e−��t1+t2�. Since chaotic mixing results in irregular alter-
nation of oppositely “charged” ribbons, the contribution of a
single region can have either sign with magnitude �v. The
typical absolute value of their sum is �Nv�e−��t1+t2�/2. Yet
this is not the end of the story since the derivative � j� j of a
sharp feature along the stable direction can create exponen-
tially large �e�t1 factors. This is the Liouville-space signa-
ture of the exponentially growing components of the stability
matrix, which affects the response starting with second order
�9,14�. However, the divergent terms cancel out: decompos-
ing �=�0+�++�− along the flow, and unstable and stable
directions, we note that only the last term is potentially dan-
gerous. Calculating the corresponding component of the
overlap integral by parts we arrive at two contributions: one
contains the derivative along the fettuccine �−

j � j f− and is
hence negligible, whereas div �− in the other provides a time-
independent factor. This results in a physical long-time
asymptotic behavior S�2�  �e−��t1+t2�/2 of the second-order
response. The same approach allows us to estimate the re-
sponse functions of higher orders and find their exponential
decay. We note that it is the mixing property of the chaotic
dynamics that outweighs the effect of the exponential growth
in certain components of the stability matrix and ensures the
convergence of the response.

To illustrate the general picture of response in a chaotic
system we calculate the linear and second-order classical re-
sponse functions for free motion on a Riemann surface M2 of
constant negative �Gaussian� curvature �8,15,16�. The classi-
cal free-particle Hamiltonian is given by

H = �1/2m�gikpipk = �2/2m , �2�

where � and gik are the absolute value of momentum and the
metric tensor. The Hamiltonian dynamics preserves a sub-
space with fixed energy described by a smooth compact 3D
manifold M3 whose points x include two coordinates and the
momentum direction angle �. Hereafter, we use dimension-
less units so that m=1, the curvature K=−1, and �=1 �when
the energy is fixed�.

Although apparently abstract, the model is related to more
tangible dynamics. The trajectories of a multiparticle system
with energy E in an arbitrary potential U�r� are known to be
the same as for free motion in a curved space with the metric
gik= �1−U�r� /E��ik �8,15�. If the metric curvature is nega-
tive, one can expect chaotic behavior due to the exponential

divergence of trajectories. In addition, when the motion is
finite �bounded�, the accessible part of the configuration
space at a given energy can be multiply connected. In the
simplest case of two coordinates the motion occurs inside a
disklike region punctured by g forbidden islands. A fraction
of trajectories approaches the boundaries so close that this
can be qualified as reflection. Utilizing Sinai’s argument
�10�, reflection can be interpreted as the transition to an an-
tipode replica of the accessible region glued to its original
counterpart via the boundaries �18�. This results in a compact
surface of genus g—i.e., with the topology of a sphere with g
handles. For g�1 the average Gaussian curvature is nega-
tive, which causes an unstable �hyperbolic� dynamics.

Free motion on a compact surface of constant negative
curvature can be treated analytically due to strong dynamical
symmetry �DS�, which originates from the SO�2,1� group
action in phase space M3 �12,16–18�. Its infinitesimal coun-
terpart so�2,1� is determined by three generators: infinitesi-
mal rotation 	z=� /�� in momentum space, the vector field
	1 that describes the geodesic flow, and their commutator
	2= �	1 ,	z�. DS with respect to the action of the group
G�SO�2,1� does not mean symmetry in a usual sense, but
rather reflects the fact that the system dynamics is given by
an element 	1 of the corresponding so�2,1� algebra.

DS implies that the space of phase-space distributions
constitutes a representation of SO�2,1� and, being decom-
posed into a sum of irreducible representations, provides a
set of uncoupled evolutions. Unitary irreducible representa-
tion of SO�2,1� are well known and can be conveniently
implemented in terms of functions 
�u� on a circle �19�.
Principal series representations relevant for our calculations
are labeled by imaginary parameter s with the Liouville op-
erator 	1=sin u�u+ �1 /2−s�cos u. The aforementioned de-
composition identifies the angular harmonic 
k�u�=eiku on a
circle with a phase-space distribution �k�x ;s� with angular
momentum k, 	z�k�x ;s�= ik�k�x ;s�, whereas any relevant
distribution can be decomposed in the angular harmonics
�k�x ;s�. The discrete spectrum 	s
 is related to the spectrum
	�
 of the Laplacian operator in M2 as �=1 /4−s2, whereas
�0�x ;s� are the corresponding eigenfunctions �12,16�. The
dipole f , being a function in M2, can be viewed as a phase-
space function independent of both � and � and hence
expanded as a sum over the principal series representations
f =�sBs�0�x ;s�.

The integrand in the response function �1� involves un-

driven evolution described by e−L̂t and interaction with the
driving field represented by the Poisson bracket with f . The
evolution part is straightforward, once the DS is established;
the problem has been treated, e.g., in Ref. �12� in the context
of two-point correlation functions. The second task requires
additional effort, since interaction with the field mixes dif-
ferent representations. Handling the second task is the main
technical result of this paper.

Due to DS, the distributions e−L̂t�0�x ;s� can be decom-
posed in the basis vectors �k�x ;s� with the same value of s
�12,16,18,20�,

SERGEY V. MALININ AND VLADIMIR Y. CHERNYAK PHYSICAL REVIEW E 77, 025201�R� �2008�

RAPID COMMUNICATIONS

025201-2



e−L̂t�0�x;s� = �
k=−�

+�

Ak�t;s��k�x;s� , �3�

and the coefficients Ak�t ;s� can be calculated explicitly using
the effective dynamics in the circle, which yields

Ak�t;s�

=
2�− 1�k�1 − e−2t�k�k + 1/2 − s�

���1/2 − s�
e−t/2

�Re� �s�est

�k +
1

2
+ s� 2F1�k +

1

2
− s,k +

1

2
,1 − s,e−2t�� ,

where 2F1 is the Gauss hypergeometric function.
The linear response function can be conveniently ex-

pressed as S�1��t���tA0�t ;s� �14�. For large t the linear re-
sponse function shows damped oscillations e��s−1/2�t. The ex-
pansion in powers of e−2t constitutes a converging series and
corresponds to RP resonances �12�.

To the best of our knowledge, the second-order response
function in strongly chaotic systems has never been calcu-
lated before. The calculation can be substantially simplified
by propagating the observable f in Eq. �1� backwards in time

and making use of �e−L̂t2�†=eL̂t2. Then we apply Eq. �3� to

decompose eL̂t2�0�x ;s� in �k�x ;s� and e−L̂t1�0�x ;s� in
�l�x ;s�. The integration over the reduced phase space in-
cludes an integral over the momentum direction �, which
results in a vanishing of all terms with k� l�1. The second-
order response function consists of several contributions
S�2�=� j�p,q,rBpBqBr�k=0

� �−1�kSj,k
�2� of similar form �18�: e.g.,

S1,k
�2� = �− 1�kk�k +

1

2
− p�ak

pqrA
k+1
* �t2;p�

�Ak�t1;r�
�t1

,

with the matrix elements

ak
s1s2s3 = �

M3
dx�

k
*�x;s1��0�x;s2��k�x;s3� . �4�

Computing the matrix elements and summation over k are
two main problems in the calculation. The first one is ad-
dressed by establishing recurrence relations for the coeffi-
cients �4� that allow expressing all of them via a few “initial
conditions”: e.g., a0

s1s2s3. This is achieved by combining the
integration-by-part rule

�
M3

dxf�x�	lg�x� = − �
M3

dx�	l f�x��g�x� �5�

�which follows from DS and is valid for any phase-space
functions f�x� and g�x� and any generator 	l� with the ladder
properties 	��k�x ;s�= ��k+1 /2−s��k�1�x ;s� of the two
anti-Hermitian-conjugated ladder operators 	�=	1� i	2 and
	�

† =	�. For instance, in the simplest case s1=s2=s3=s, the
recurrence relations read

ak+1 =
8k2 + 1 − s2

�2k + 1�2 − s2ak −
�2k − 1�2 − s2

�2k + 1�2 − s2ak−1, �6�

and all coefficients ak are expressed via a0 due to the sym-
metry ak=a−k. In this case we find the asymptotic behavior
ak�k−1/2�s for k→�. The set of coefficients a0, as well as
the spectrum 	s�
, are attributes of a particular Riemann sur-
face. Riemann surfaces of constant negative curvature have
genus g�1 and are classified by the so-called moduli spaces
whose dimensions grow linearly in g. Therefore, any finite
set of spectral elements s� and matrix elements a0

s�s�s� can be
implemented for some particular Riemann surface, and we
treat them as independent parameters.

The second problem is addressed using the following ap-
proach. The convergence of the series over k is ensured by
the dependence Ak�t ;s��exp�−2ke−t� for large k. The series
is almost sign alternating, and the dependence of the sum-
mand magnitude on k becomes smoother with increasing k,
independently of t. This allows for an efficient regrouping
procedure to evaluate the series without summation of the
exponentially increasing with t number of terms. The proce-
dure also works in any order of e−t1 and e−t2 obtained from
the hypergeometric expansions of Ak�t ;s� �20�. Our study of
the response can be extended by adding Langevin noise to
classical Hamiltonian dynamics, which is equivalent to add-
ing a certain second-order �diffusion� differential operator to

the Liouville operator: L̂=−�D̂+ L̂, where � is given by the
noise intensity. In the limit �→0 the RP resonances are iden-

tified as the eigenvalues of the Fokker-Planck operator L̂,
whereas the corresponding spectral decompositions of
S�1��t� and S�2��t1 , t2� reproduce the expressions for the clas-
sical response obtained above �21�.

The absolute value of the 2D Fourier transform of the
second-order response function presented in Fig. 2 shows
diagonal and cross peaks, as well as a stretched along the �1
direction feature �18�. The latter originates from damped
time-domain oscillations with variable period and can be in-
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FIG. 2. �Color online� Absolute value of the 2D Fourier trans-
form of the second-order response function: �a� single resonance
s=5i and �b� linear combination of terms with two resonances
s1=3i and s2=5i. The response is evaluated for the equilibrium
phase-space density with ��0 /�E���E−1 /2�. Linear plots show
cross sections at �1=�2=5.
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terpreted as a signature of chaos in the underlying dynamics.
Also note that in chaotic systems the peak frequencies may
not be attributed to any particular periodic motions, although
they can be expressed in terms of all periodic orbits via the
dynamical � function �11�. Therefore, they can be referred to
as collective chaotic resonances.

Chaotic features are quite generic for molecular systems.
We believe that systems of hydrogen bonds �22� are promis-
ing examples to observe complex potentials that may induce
chaotic behavior. We demonstrated that spectroscopic signals
from a chaotic system have peaks corresponding to RP reso-
nances that can be naively assigned to periodic motions
coupled to the environment. We propose the asymmetry of
the peaks in the 2D spectrum as a signature of chaos, since
usually this peak shape cannot be explained by the interac-
tion with the multimode harmonic bath �multimode Brown-
ian oscillator�. Note that RP resonances can show up and
hence be spectroscopically observed in the relaxation dy-
namics of more general systems with mixed phase space
�23�.

In this paper we developed a general semiquantitative pic-
ture of the classical nonlinear response in a chaotic system
and demonstrated the exponential long-time convergence of

the response functions. The latter has been attributed to the
exponential behavior of the stability matrix whose growing
components combined with the mixing property assist the
convergence. The picture is corroborated by the calculation
of the second-order response for free motion on a surface of
constant negative curvature. We believe that this is the first
analytical calculation of classical nonlinear response for a
strongly chaotic system. We showed that the diagonal and
off-diagonal peaks with pronounced stretched features in the
2D spectrum can be interpreted in terms of collective
�Ruelle-Pollicott� resonances.

In the future we plan to extend our work to numerical
studies of multidimensional motion in a potential with a
number of forbidden regions, starting with the simplest 2D
case. In addition, the technique developed in the paper can
be applied to describe the dynamics of a quantum electronic
or high-frequency IR transition coupled to a low-dimensional
classical chaotic system as opposed to a multimode harmonic
bath.

We acknowledge the support through the start-up funds
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